Transcription

Wireshark Lab: IPSOLUTIONSupplementtoComputerNetworking:ATop- ‐DownApproach,7thed.,J.F.KuroseandK.W.Ross 2005- ‐2016,J.FKuroseandK.W.Ross,AllRightsReservedFig. 1 ICMP Echo Request message IP information1. What is the IP address of your computer?The IP address of my computer is 192.168.1.462. Within the IP packet header, what is the value in the upper layer protocol field?Within the header, the value in the upper layer protocol field is ICMP (0x01)

3. How many bytes are in the IP header? How many bytes are in the payload of theIP datagram? Explain how you determined the number ofpayload bytes.There are 20 bytes in the IP header, and 56 bytes total length, thisgives 36 bytes in the payload of the IP datagram4. Has this IP datagram been fragmented? Explain how you determined whether or notthe datagram has been fragmented.The more fragments bit 0, so the data is not fragmented.5. Which fields in the IP datagram always change from one datagram to the nextwithin this series of ICMP messages sent by your computer?Identification, Time to live and Header checksum always change.6. Which fields stay constant? Which of the fields must stay constant? Which fieldsmust change? Why?The fields that stay constant across the IP datagrams are: Version (since we are using IPv4 for all packets) header length (since these are ICMP packets) source IP (since we are sending from the same source) destination IP (since we are sending to the same dest) Differentiated Services (since all packets are ICMP they use the sameType of Service class) Upper Layer Protocol (since these are ICMP packets)The fields that must stay constant are: Version (since we are using IPv4 for all packets) header length (since these are ICMP packets) source IP (since we are sending from the same source) destination IP (since we are sending to the same dest) Differentiated Services (since all packets are ICMP they use the sameType of Service class) Upper Layer Protocol (since these are ICMP packets)The fields that must change are: Identification(IP packets must have different ids) Time to live (traceroute increments each subsequent packet) Header checksum (since header changes, so must checksum)7. Describe the pattern you see in the values in the Identification field of the IPdatagramThe pattern is that the IP header Identification fields increment with eachICMP Echo (ping) request.

Fig. 2 ICMP TTL exceeded reply, IP information8. What is the value in the Identification field and the TTL field?Identification: 30767TTL: 649. Do these values remain unchanged for all of the ICMP TTL-exceeded replies sentto your computer by the nearest (first hop) router? Why?The identification field changes for all the ICMP TTL-exceeded repliesbecause the identification field is a unique value. When two or more IPdatagrams have the same identification value, then it means that these IPdatagrams are fragments of a single large IP datagram.The TTL field remains unchanged because the TTL for the first hop router isalways the same.

Fig. 3 ICMP Echo Request pkt size 2000, first fragment10. Find the first ICMP Echo Request message that was sent by your computer afteryou changed the Packet Size in pingplotter to be 2000. Has that message beenfragmented across more than one IP datagram?Yes, this packet has been fragmented across more than one IP datagram11. Print out the first fragment of the fragmented IP datagram. What information inthe IP header indicates that the datagram been fragmented? What information inthe IP header indicates whether this is the first fragment versus a latter fragment?How long is this IP datagram?The Flags bit for more fragments is set, indicating that the datagram has beenfragmented. Since the fragment offset is 0, we know that this is the firstfragment. This first datagram has a total length of 1500, including theheader.

Fig. 4 ICMP Echo Request pkt size 2000, second fragment12. Print out the second fragment of the fragmented IP datagram. What information inthe IP header indicates that this is not the first datagram fragment? Are the morefragments? How can you tell?We can tell that this is not the first fragment, since the fragment offset is1480. It is the last fragment, since the more fragments flag is not set.13. What fields change in the IP header between the first and second fragment?The IP header fields that changed between the fragments are: total length,flags, fragment offset, and checksum.

Fig. 5 ICMP Echo Request pkt size 3500, first fragment14. How many fragments were created from the original datagram?After switching to 3500, there are 3 packets created from the originaldatagram.15. What fields change in the IP header among the fragments?The IP header fields that changed between all of the packets are: fragmentoffset, and checksum. Between the first two packets and the last packet, wesee a change in total length, and also in the flags. The first two packets havea total length of 1500, with the more fragments bit set to 1, and the last packethas a total length of 540, with the more fragments bit set to 0.